Linear Algebra 2

Zambelli Lorenzo BSc Applied Mathematics

February 2021-March 2021

Inner Product spaces

Goal: move from \mathbb{R}^n to the higher level of any arbitrary real vector space

Definition 1 Inner product V a real vector space. An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{R}^1$ that satisfies the three properties:

1. $\langle x, x \rangle \geq 0 \ \forall x \in V$ and $\langle x, x \rangle = 0 \Leftrightarrow x = 0$

2.
$$
\langle x, y \rangle = \langle y, x \rangle \ \forall x, y \in V
$$

3. $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle \ \forall \alpha \beta \in \mathbb{R}$, $x, y, z \in V$

Definition 2 Inner product space Real vector space V together with an inner product \langle , \rangle

Note:

- Norm of $v \in V: ||v|| = \langle v, v \rangle^{1/2}$ and
- If v, u are orthogonal than $\langle v, u \rangle = 0$

Exemples:

- 1. $V = \mathbb{R}^n$, $\langle x, y \rangle := x^T y$ (scalar product)
- 2. $\mathbb{R}^{m \times n} \langle A, B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ij} B_{ij}$

3.
$$
V = C[a, b] \langle f, g \rangle := \int_a^b f(x)g(x)dx
$$

4. $P_n = \{p(x)|p(x) = p_0 + p_1x + \cdots + p_{n-1}x^{n-1}\}$ real polynomials of degree at most $n-1$. Take $x_1, x_2, ..., x_n \in \mathbb{R}$ *n* distinct reals. Inner Product on P_n :

$$
\langle p, q \rangle := \sum_{i=1}^{n} p(x_i) q(x_i)
$$

Theorem 1 Pythagoras Theorem Let $u, v \in V$ be orthogonal. Then

$$
||u + v||^2 = ||u||^2 + ||v||^2
$$

 $\overline{^1V} \times V$ means cartesian product

Note: For $A \in \mathbb{R}^{m \times n}$ $||A|| = (trA^{T}A)^{1/2}$

Definition 3 Projection For arbitrary (V, \langle , \rangle) we define for given u, v

$$
p := \frac{\langle u, v \rangle}{\|v\|} \cdot \frac{v}{\|v\|}
$$

$$
= \alpha \cdot \text{unit vector}
$$

Projection of u onto v

The concept of vector projection indeed gives te following two geometric properties:

- 1. $u p$ and p are orthogonal
- 2. $u = p \Leftrightarrow \exists \beta \in \mathbb{R}$ such that $u = \beta v$

Theorem 2 Cauchy-Schwarz Let (V, \langle , \rangle) be an inner product space and let $u, v \in V$ then

$$
|\langle u, v \rangle| \le ||u|| \cdot ||v||
$$

There, equality holds if and only if u and v are linearly dependent

Now we can also define the angle between two vectors $u, v \in V$ with V be arbitrary inner product space. Since $|\langle u, v \rangle| \le ||u|| ||v||$, we have

$$
-1 \le \frac{\langle u, v \rangle}{\|u\| \|v\|} \le 1
$$

whose angle: $\theta \in [-\pi, \pi]$ such that

$$
\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}
$$

General Normed spaces $(V, \|\. \|)$

Theorem 3 Let \langle , \rangle be an inner product on V. For $v \in V$, define

$$
||v|| = \sqrt{\langle v, v \rangle}
$$

Then $\Vert . \Vert$ is a norm on V

In mathematics, we also define the concept of norm on a real vector space

Definition 4 Let V be a real vector space. A norm on V is a function $\Vert . \Vert : V \to \mathbb{R}$ that satisfies the following properties:

- 1. $||v|| > 0 \ \forall v \in V$ and $||v|| = 0 \Leftrightarrow v = 0$
- 2. $\|\alpha v\| = |\alpha| \|v\| \; \forall \alpha \in \mathbb{R}, v \in V$
- 3. $||v + w|| \le ||v|| + ||w|| \forall v, w \in V$ (triangle inequality)

If $\Vert . \Vert$ is a norm of V, then the pair $(V, \Vert . \Vert)$ is called a normed linear space

Examples

1.
$$
V \in \mathbb{R}^n
$$
 for $v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$ define $||v|| = \sum_{i=1}^n |v_i|$ This is a norm on \mathbb{R}^n . We often denote it by $|| \, ||_1, \, "1\text{-norm}"$

- 2. $V = \mathbb{R}^n$, $||v|| = \max_{i=1,\dots,n} |v_i|$ it is also a norm, denoted by $|| ||_{\infty}$, or infinity norm
- 3. $V = C[a, b], ||f||_{\infty} = \max_{x \in [a, b]} |f(x)|$

4.
$$
V = C[a, b], ||f||_1 = \int_a^b |f(x)| dx
$$

5. $V = \mathbb{R}^n$, $||v|| = (\sum_{i=1}^n |v_i|^P)^{1/P}$, P-norm

Theorem 4 Let V be a real linear space and let $\Vert . \Vert$ be a norm on V. Then there exists an inner product \langle , \rangle on V such that

$$
\langle v, v \rangle^{1/2} = ||v|| \quad \forall v \in V
$$

if and only if

$$
2||u||2 + 2||v||2 = ||u + v||2 + ||u - v||2 \quad \forall u, v \in V
$$

Definition 5 Let x, y be vectors in a normed linear space. The distance between x, y is defined to be the number $||y - x||$

Orthonormal sets

Recall: the standard basis in R^n :

$$
e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix},
$$

Definition 6 Let V be an inner product space with inner product $\langle u, v \rangle$. Let $v_1, ..., v_n \in V$ be all nonzero. The set $\{v_1, ..., v_n\}$ is called orthogonal if $\langle v_i, v_j \rangle = 0 \ \forall i \neq j$. It is called **orthonormal** if $||v_i|| = 1$ for $i = 1, 2, ..., n$

$$
\delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}
$$
 Kronecker delta symbol

Note: $\{v_1, ..., v_n\}$ is an orthonormal set if $i^2 \langle v_i, v_j \rangle = \delta_{ij}$

Definition 7 An orthonormal set of vectors is an orthogonal set of unit vectors

Theorem 5 orthogonal set and linearly independent If $\{v_1, ..., v_n\}$ is an orthogonal set, then $v_1, ..., v_n$ are linearly independent

Note: Suppose (V, \langle , \rangle) inner product space, let $\{u_1, ..., u_n\}$ be orthonormal set in V. Since $u_1, \ldots u_n$ are linearly independent and span the subspace $S := span(u_1, \ldots, u_n)$, the set $\{u_1, ..., u_n\}$ is a basis of S

Definition 8 We call $\{u_1, ..., u_n\}$ an orthonormal basis of S

Theorem 6 Let $\{u_1, ..., u_n\}$ be an orthonormal basis of the inner product space V. Let $v \in V$ then

$$
v = \sum_{i=1}^{n} \langle v, u_i \rangle \cdot u_i
$$

 $\langle v, u_i \rangle$ is the coordinates of V with respect to the basis $\{u_1, ..., u_n\}$

Theorem 7 Let $\{u_1, ..., u_n\}$ be an orthonormal basis of V. Let $u = \sum_{i=1}^n a_i u_i$ and $v =$ $\sum_{i=1}^{n} b_i u_i$ be two vectors in V. Then the inner product of u and v is equal to

$$
\langle u, v \rangle = \sum_{i=1}^{n} a_i b_i{}^3
$$

 $\sum_{i=1}^{n} c_i u_i$ any vector in V. Then it norm is equal to **Corollary 1 Formula of Parseval** Let $\{u_1, ..., u_n\}$ be an orthonormal basis of V and $v =$

$$
||v|| = \left(\sum_{i=1}^{n} c_i^2\right)^{1/2}
$$

Note that the RHS was the old norm of the coordinate vector $c =$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ $\overline{c_1}$. . . \overline{c}_n \setminus $\in \mathbb{R}^n$

²if and only if

³ scalar product $a^T b$

Least squares problem

Recall the previous least square problem: Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, find $\hat{x} \in \mathbb{R}^n$ such that $||A\hat{x} - b||^2$ is minimal.

More mathematical: minimize the function $r : \mathbb{R}^n \to [0, \infty)$ defined by $r(x) = ||Ax - b||^2$.

Geometric interpretation: find the orthogonal projection p of b onto the surface $R(A)$, by using the normal equation: $A^T A \hat{x} = A^T b$.

Under the additioanl assumption $rank(A) = n$ (i.e. A is injective) we know that A^TA non singular, in that case \hat{x} is unique and given by $\hat{x} = (A^T A)^{-1} A^T b$.

if the columns of A are an orthonormal set, then $A^T A = I^4$ so $\hat{x} = A^T b$ and the projection p equal

$$
p = AA^Tb
$$

this is called the **projector** onto $R(A)$

Theorem 9 Let S be a finite dimensional subspace of V and $\{u_1, ..., u_n\}$ an orthonormal basis of S. For $x \in V$ define

$$
p = \sum_{i=1}^{n} \langle x, u_i \rangle u_i
$$

then $p \in S$ and $x - p \in S^{\perp}$

Theorem 10 $p = \sum_{i=1}^{n} \langle x, u_i \rangle u_i$ is the vector in S that is closet to x. That is, for any $y \in S$ with $y \neq p$ we have

$$
||x - y|| > ||x - p||
$$

Definition 10 orthogonal projection The vector p is called the orthogonal projection of x onto S

Corollary 2 Let S be a nonzero subspace of \mathbb{R}^m and let $b \in \mathbb{R}^m$. If $\{u_1, ..., u_k\}$ is an orthonormal basis for S and $U = (u_1, ..., u_k)$, then the projection p of b onto S is given by

$$
p = U U^T b
$$

Note: the last few theorems are use in many application, but most commonly are used for approximate a function. The process consist into project a function onto a subspace.

Theorem 8 An $n \times n$ matrix Q is orthogonal iff $Q^t Q = I$

 $\overline{4}$

Definition 9 An $n \times n$ matrix is said to be orthogonal matrix if the column vectors of the matrix form an orthonormal set in \mathbb{R}^n

Fourier approximation

Definition 11 The nth order Fourier approximation of $f(x)$ Let n be a positive integer. A trygonometric function of degree n is any function of the form

$$
t_n^*(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos(kx) + b_k \sin(kx)
$$

where $a_i, b_i \in \mathbb{R}$. $a_0 = \frac{1}{\pi}$ $\frac{1}{\pi} \int_a^b f(x) dx$ and $a_k = \langle f, \cos(kx) \rangle = \frac{1}{\pi}$ $\frac{1}{\pi} \int_a^b f(x) \cos(kx) dx$, $b_k =$ $\langle f, \sin(kx) \rangle$

Aim: given *n*, find a_i, b_i so that $||f - t_n||$ is minimal The real numbers a_i, b_i are called the Fourier coefficients of f

Gram-Schmidt Orthogonalization

General Problem: Given an inner product space (V, \langle , \rangle) . Let S be a finite dimensional subspace V . Find an orthonormal basis for it.

Theorem 11 The Gram-Schidt Process Let $\{x_1, ..., x_n\}$ be a basis for the inner product space V. Let

$$
u_1 = \left(\frac{1}{\|x_1\|}\right) x_1
$$

and define u_2, \ldots, u_n recursively by

$$
u_{k+1} = \frac{1}{\|x_{k+1} - p_k\|} (x_{k+1} - p_k) \quad \text{for } k = 1, ..., n-1
$$

where

$$
p_k = \langle x_{k+1}, u_1 \rangle u_1 + \langle x_{k+1}, u_2 \rangle u_2 + \dots + \langle x_{k+1}, u_k \rangle u_k
$$

=
$$
\sum_{i=1}^k \langle x_{k+1}, u_i \rangle u_i
$$

is the projection of x_{k+1} onto $Span(u_1, ..., u_k)$. Then the set

 ${u_1, ..., u_n}$

is an orthonormal basis for V

Theorem 12 Let $A \in \mathbb{R}^{n \times n}$ be nonsingular. Then there exists an orthogonal matrix $Q \in$ $\mathbb{R}^{n \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{n \times n}$ with positive diagonal elements such that

 $A = QR$

Theorem 13 QR factorization Let $A \in \mathbb{R}^{m \times n}$, have rank (n) , columns of A is linearly independent. Then, there exists $Q \in \mathbb{R}^{m \times n}$ whose columns form an orthonormal set in \mathbb{R}^m , and $R \in \mathbb{R}^{n \times n}$ upper triangular with positive diagonal elements such that

$$
A = QR
$$

Remark: Q is called column-orthogonal. Here, follow QR factorization of a $\mathbb{R}^{3\times3}$ matrix in term of column vectors:

Theorem 14 If A is an $m \times n$ matrix of rank n, then the least squares solution of $Ax = b$ is given by $\hat{x} = R^{-1}Q^{T}b$, where Q and R are the matrices obtained from the QR factorization. The solution \hat{x} may be obtained by using back sobstitution to solve $Rx = Q^Tb$

Eigenvalues and eigenvectors

Remember the definition from LA1, here we will write only the new theorems, definition,facts or we rewrite previous theorem in a better way

For $A \in \mathbb{R}^{n \times n}$ the characteristic polynomial is $p(s) = det(A - sI)$. This is always a nth degree polynomial with real coefficients. In fact:

$$
p(s) = (-1)^n s^n + p_{n-1} s^{n-1} + \dots + p_1 s + p_0
$$

with $p_i \in \mathbb{R}$.

Fact: λ eigenvalue $\Leftrightarrow \bar{\lambda}$ eigenvalue. Two explanations for this (only true if $A \in \mathbb{R}^{n \times n}$):

- 1. $p_A(s)$ is a real polynomial. If λ root of $p_A(s) \Leftrightarrow \bar{\lambda}$ is a root of $p_A(s)$
- 2. λ eigenvalue of A, then $Ax = \lambda x \Leftrightarrow \overline{Ax} = \overline{\lambda x} \Leftrightarrow \overline{A}x = \overline{\lambda x} \Leftrightarrow A\overline{x} = \overline{\lambda x}$ where $\overline{\lambda}$ eigenvalue, \bar{x} eigenvector.

Product: Since $p(s) = (\lambda_1 - s)(\lambda_2 - s) \cdots (\lambda_n - s)$ and $p(s) = det(A - SI)$ we have

$$
det(A) = p(0) = \lambda_1 \lambda_2 \cdots \lambda_n
$$

Sum: for given A let $tr(A) = \sum_{i=1}^{n} A_{ii}$ then the trace of A it is also equal to the sum of eigenvalues: $tr(A) = \lambda_1 + \cdots + \lambda_n$

Similarity of matrices

Definition 12 $A, B \in \mathbb{R}^{n \times n}$, or in $\mathbb{C}^{n \times n}$ if there exists a nonsingular $S \in \mathbb{C}^{n \times n}$ such that

$$
B = S^{-1}AS
$$

Recall: If $\alpha: \mathbb{C}^n \to \mathbb{C}^n$ is a linear map and $\{v_1, v_2, ..., v_n\}$ a basis of \mathbb{C}^n then the matrix of α with respect to $\{v_1, ..., v_n\}$ is defined as $A \in \mathbb{C}^{n \times n}$, $M = (a_{ij})$, where the a_{ij} satisfy

$$
\alpha(v_1) = a_{11}v_1 + a_{21}v_2 + \dots + a_{n1}v_n
$$

\n
$$
\alpha(v_2) = a_{12}v_1 + a_{22}v_2 + \dots + a_{n2}v_n
$$

\n
$$
\vdots
$$

\n
$$
\alpha(v_n) = a_{1n}v_1 + a_{2n}v_2 + \dots + a_{nn}v_n
$$

Now defined by $\alpha(x) = Ax$. So, A and B are similar means: they define one and the same linear map, or: they are matrices of one and the same linear map.

Theorem 15 Let $A, B \in \mathbb{R}^{n \times n}$. If A and B are similar, they have the same characteristic polynomial and the same eigenvalues.

Theorem 16 Cayley-Hamilton Let A be an $n \times n$ matrix, and let $p_A(t) = det(A - tI)$ be the corresponding characteristic polynomial. Then, $p_A(A) = 0$.

Note:

1. I, $A, A^2, ..., A^n$ are linearly dependent, thus

$$
p_A(A) = A^n + p_{n-1}A^{n-1} + \dots + p_1A + p_0I = 0
$$

Hermitian matrices

Definition 13 Field set k with two binary operations, called addition and multiplication, satisfying some axioms.

Complex scalar product:

$$
z = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}, \quad w = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \rightarrow \sum_{i=1}^n \bar{z_i} w_i
$$

Note: \overline{z}^T is equal to z^H and it is called Hermitian transponse

Definition 14 Norm on \mathbb{C}^n induce by $z^H w$.

$$
||z||^2 = z^H z = \sum_{i=1}^n \bar{z_i} z_i = \sum_{i=1}^n |z_i|^2
$$

Definition 15 Complex inner product space Let V be a complex vector space. An inner product on V is a map $\langle , \rangle : V \times V \to \mathbb{C}$ and satisfying the following conditions:

1. $\langle z, z \rangle > 0$ $\forall z \in V$ and $\langle z, z \rangle = 0 \Leftrightarrow z = 0$

2.
$$
\langle z, w \rangle = \overline{\langle w, z \rangle} \ \forall z, w \in V
$$

3.
$$
\langle \alpha z + \beta w, u \rangle = \alpha \langle z, u \rangle + \beta \langle w, u \rangle \ \forall \alpha, \beta \in \mathbb{C} \ \forall z, w, u \in V
$$

All the results on real inner product spaces carry over to complex ones

- $z, w \in V$ orthogonal if $\langle z, w \rangle = 0$
- norm induced by inner product: $||z||^2 = \langle z, z \rangle$
- orthonormal set in $V: \{z_1, ..., z_n\}$ such that $||z_i|| = 1 \forall i$ and $\langle z_i, z_j \rangle = 0$ $i \neq j$
- $\{z_1, ..., z_n\}$ are linearly independent

• Parseval theorem: if $\{w_1, ..., w_n\}$ orthonormal basis of V, and $z \in V$, then

$$
z = \sum_{i=1}^{n} \langle z, w_i \rangle w_i
$$

and

$$
||z||^2 = \sum_{i=1}^n |\langle z, w_i \rangle|^2
$$

Definition 16 Norm V a complex vector space. A norm on V is a map $\Vert . \Vert : V \to \mathbb{R}$ such that

- 1. $\forall z \in \mathbb{C} \ \|z\| \geq 0 \ and \ \|z\| = 0 \Leftrightarrow z = 0$
- 2. $\forall \alpha \in \mathbb{C} \ \forall z \in V \ \|\alpha z\| = |\alpha| \|z\|$
- 3. $\forall z, w \in V \ \|z+w\| \leq \|z\| + \|w\|$

Complex matrices

 $\mathbb{C}^{m \times n}$: the complex vector space of all $m \times n$ matrices with entries in \mathbb{C} .

Definition 17 Hermetian transponse For given $M = (m_{ij})$, $\overline{M} = (\overline{m_{ij}})$ Hermetian transponse of M:

$$
M^H = \overline{M}^T
$$

Inner product on $\mathbb{C}^{m \times n}$:

$$
\langle M, N \rangle = tr(M^H N) = \sum_{i=1}^{m} \sum_{j=1}^{n} \overline{m_{ij}} n_{ij}
$$

Basic Rules:

- $\bullet \ \ (A^H)^H = A$
- $\bullet \ (\alpha A + \beta B)^H = \overline{\alpha} A^h + \overline{\beta} B^H$
- \bullet $(AB)^{H} = B^{H}A^{H}$

Definition 18 Hermitian Matrix A matrix M is said to be **Hermitian** if $M = M^H$

Note: every symmetric matrices is Hermitian. If M is a matrix with real entries, then $M^H = M^T$

Theorem 17 Let $A \in \mathbb{C}^{n \times n}$ be Hermitian. Then all its eigenvalues are real. Eigenvectors belonging to **distinct** eigenvalues are **orthogonal**

Definition 19 $U \in \mathbb{C}^{n \times n}$ is called **unitary** if its columns form an **orthonormal set** in \mathbb{C}^n

Theorem 18 Schur's Theorem For each $n \times n$ matrix A, there exists a unitary matrix U such that Λ is upper triangular

Theorem 19 Schur decomposition Let $A \in \mathbb{C}^{n \times n}$. There exists a unitary $U \in \mathbb{C}^{n \times n}$ and an upper triangular $T \in \mathbb{C}^{n \times n}$ such that

$$
U^H A U = T
$$

 $A = UTU^H$

or equivalently

called Schur decomposition or factorization

Theorem 20 If A is Hermitian then there exists a unitary U that diagonalizes A and a real $diagonal$ matrix Λ such that

or equivalently

 $A = U\Lambda U^H$

So, for a Hermitian matrix $A \in \mathbb{C}^{n \times n}$ there exists an othonormal basis \mathbb{C}^n of eigenvectors of A

Theorem 21 Real Schur Decomposition Let $A \in \mathbb{R}^{n \times n}$. There exist an orthogonal $Q \in$ $\mathbb{R}^{n \times n}$ and a quasi upper triangular matrix $T \in \mathbb{R}^{n \times n}$ such that

$$
A = QTQ^T
$$

where

$$
T = \begin{pmatrix} B_1 & \cdots & \cdots & \cdots \\ 0 & B_2 & \cdots & \cdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & B_k \end{pmatrix}
$$

and where B_i 's are either 1×1 or 2×2 matrices.

We determined as follows:

- Compute all eigenvalues $\lambda_1, ..., \lambda_n$ of A
- Suppose $\lambda_1, ..., \lambda_r$ are not real and $\lambda_{r+1}, ..., \lambda_n$ are real
- $\lambda_1, ..., \lambda_r$ appears in complex conjugate pairs, says $\lambda_1, \lambda_1, \lambda_2, \lambda_2, ..., \lambda_{r/2}, \lambda_{r/2}$
- Suppose $\lambda_j = a_j + ib_j$ and $\overline{\lambda_j} = a_j ib_j$. This gives $r/2 \times 2$ matrices $B_j = \begin{pmatrix} a_j & b_j \ b & c_j \end{pmatrix}$ $-b_j$ a_j \setminus
- The remaining real $\lambda_{r+1}, ..., \lambda_n$ gives $n-r$ 1 × 1 matrices $B_j = \lambda_j$

Theorem 22 Let $A \in \mathbb{R}^{n \times n}$ be symmetruc. There exists an orthogonal matrrix $Q \in \mathbb{R}^{n \times n}$ and a real diagonal matrix $\Lambda \in \mathbb{R}^{n \times n}$ such that

$$
A = Q\Lambda Q^T
$$

Definition 20 Let $A \in \mathbb{C}^{n \times n}$. A is called normal if

$$
A^H A = A A^H
$$

Theorem 23 Let $A \in \mathbb{C}^{n \times n}$. There exists unitary $U \in \mathbb{C}^{n \times n}$ and a diagonal matrix $\Lambda \in$ $\mathbb{C}^{n \times n}$ such that $A = U\Lambda U^H$ if and only if A is normal

 $U^H A U = \Lambda$

Singular value decomposition

Let $A \in \mathbb{R}^{m \times m}$. For the moment let assume $n \leq m$ (A is tall). We call A **rank deficient** if $rank(A) < n$.

Often we want to know: how close is A from being rank deficient.

Theorem 24 Let $A \in \mathbb{R}^{m \times m}$, $n \leq m$. There exist **orthogonal matrices** $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{m \times m}$ and real numbers

$$
\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0
$$

Such that $A = U\Sigma V^T$ and $\sigma_i = \sqrt{\frac{\sigma_i}{\sigma_i}}$ λ_i for $i = 1, ..., n$, where

Moreover, if $rank(A) = r$ then

$$
\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0
$$

$$
\sigma_{r+1} = \sigma_{r+2} = \cdots = \sigma_n = 0
$$

The numbers of σ_i are **unique**. They are called the **singular values of** A.

Idea: The smallest singular values quantify how close A is to lose a rank.

Some observations on the SVD

- 1. Given $A \in \mathbb{R}^{m \times n}$ $(m \ge n)$ its singular values $\sigma_1, ..., \sigma_n$ are **unique** since $\sigma_1^2, ..., \sigma_n^2$ are the eigenvalues of $A^T A$
- 2. U and V are not unique
- 3. Since $V^T A^T A V = \Lambda$ with $\sigma_1^2, ..., \sigma_n^2$ eigenvalues, the columns of V are always eigenvectors of $A^T A$
- 4. Since $AA^T = U \begin{pmatrix} \Sigma_1 & \cdots & \Sigma_N \end{pmatrix}$ 0 $\int V^{T}V(\Sigma_{1} \quad 0) U^{T} = U\begin{pmatrix} \Sigma_{1}^{2} & 0 \\ 0 & 0 \end{pmatrix} U^{T}$ the columns of U are always eigenvectors of AA^{\dagger}
- 5. if A has rank r , then
	- (a) $v_1, ..., v_r$ form an orthonormal basis for $R(A^T)$
	- (b) $v_{r+1},..., v_n$ form an orthonormal basis for $N(A)$
	- (c) $u_1, ..., u_r$ form an orthonormal basis for $R(A)$
	- (d) $U_{r+1},...,u_n$ forma an orthonormal basis for $N(A^T)$
- 6. let $A \in \mathbb{R}^{m \times n}$ and $AV = U\Sigma$, then $A^{T}u_j = \sigma_j v_j$ for $j = 1, ..., n$ and $A^{T}u_j = 0$ for $j = n + 1, ..., m$

Theorem 25 General Let $A \in \mathbb{R}^{m \times n}$ rank $(A) = r \leq min(n,m)$. There exist $\sigma_1 \geq \sigma_2 \geq$ $\cdots \geq \sigma_r > 0$ and orthogonal $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ such that

$$
A = U \begin{pmatrix} \Sigma_1 & 0_{r \times n-r} \\ 0_{m-r \times r} & 0_{m-r \times n-r} \end{pmatrix} V^T
$$

Remark: If $rank(A) = n$ (injective) then the 0 matrices on the right are absent. If $rank(A) = m$ surjective then the 0 matrices on the bottom are absent. If A is square nonsingular, then all 0 matrices are absent

Application: Given $A \in \mathbb{R}^{m \times n}$, $rank(A) = r$, and $0 \leq k \leq r$, compute the distance of A to M_k define by

$$
d(A, M_k) = inf\{ ||A - S||_F | S \in M_k \}
$$

 $\|.\|_F$ is the Frobenious norm on $\mathbb{R}^{m \times n}$ which is define by

$$
||M||_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} m_{ij}^2} = \sqrt{tr(M^T M)}
$$

Also find $X \in M_k$ such that $d(A, M_k) = ||A - X||_F$

Theorem 26 Let $A \in \mathbb{R}^{m \times n}$ and $k < r = rank(A)$. Let $M_k = \{S \in \mathbb{R}^{m \times n} | rank(S) \leq k\}$. Let $\sigma_1, ..., \sigma_r$ be the non-zero eigenvalues of A, then

$$
d(A, M_k) = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2}
$$

Let $A = U\Sigma V^T$ be the SVD of A. Then $X = U\Sigma V^T$ where Σ have now the $\sigma_{k+1},...,\sigma_r = 0$. Then $X \in M_k$ and

$$
||A - X||_F = d(A, M_k)
$$

 X is called the best approximation in M_k of A

Quadratic Form

Definition 21 A quadratic equation in two variables x, y is an equation of the form

$$
ax^{2} + 2bxy + cy^{2} + dx + ey + f = 0
$$
\n(1)

Equation (1) may be rewritten in the form

$$
\begin{pmatrix} x & y \end{pmatrix} \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} d & e \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + f = 0
$$

Let

$$
x = \begin{pmatrix} x \\ y \end{pmatrix} \quad A = \begin{pmatrix} a & b \\ b & c \end{pmatrix}
$$

The term

$$
x^T A x = ax^2 + 2bxy + cy^2
$$

is called the **quadratic form** associated with (1)

Definition 22 Let $A \in \mathbb{R}^{n \times n}$ be symmetric then the expression $x^T A x$ with $x \in \mathbb{R}^n$ is called the quadratic form associated with A. It is also define a quadratic function

$$
F: \mathbb{R}^n \to \mathbb{R}^n \quad F(x) = x^T A x
$$

Definition 23 Given $F : \mathbb{R}^n \to \mathbb{R}$, a point $x_0 \in \mathbb{R}^n$ is called **stationary** if $\frac{\partial F}{\partial x_i}(x_0) = 0$ for $i = 1, 2, ..., n$

Definition 24 Let $A \in \mathbb{R}^{n \times n}$ be symmetric

- 1. A is **positive definite** if $x^T Ax > 0$ $x \neq 0$ (denoted by $A > 0$)
- 2. A negative definite if $x^T A x < 0$ $x \neq 0$ (denoted by $A < 0$
- 3. $A \geq 0$, or A is **positive semi-definite** if $x^T A x \geq 0 \ \forall x \in \mathbb{R}^n$
- 4. $A \leq 0$, or A is **negative semi-definite** if $x^T A x \leq 0 \ \forall x \in \mathbb{R}^n$
- 5. A **indefinite** if $x^T Ax$ taken both positive as well as negative real values

Theorem 27 Let $A \in \mathbb{R}^{n \times n}$ be symmetric and $\lambda_1, \lambda_2, ..., \lambda_n$ be its real eigenvalues. We have:

- 1. $A > 0 \Leftrightarrow \lambda_i > 0$ $i = 1, 2, ..., n$
- 2. $A < 0 \Leftrightarrow \lambda_i < 0$ $i = 1, 2, ..., n$
- 3. $A \geq 0 \Leftrightarrow \lambda_i \geq 0$ $i = 1, 2, ..., n$
- 4. $A \leq 0 \Leftrightarrow \lambda_i \leq 0$ $i = 1, 2, ..., n$
- 5. A is indefinite \Leftrightarrow A has eigenvalues of different sign

Definition 25 Let $F : \mathbb{R}^n \to \mathbb{R}$ be C^2 . Let x_0 be stationary point, the **Hessian matrix** at x_0 is

$$
H(x_0) = \begin{pmatrix} F_{x_1x_1}(x_0) & F_{x_1x_2}(x_0) & \cdots & F_{x_1x_n}(x_0) \\ F_{x_2x_1}(x_0) & F_{x_2x_2}(x_0) & & \vdots \\ \vdots & & \ddots & \vdots \\ F_{x_nx_1} & \cdots & \cdots & F_{x_nx_n}(x_0) \end{pmatrix}
$$

Theorem 28 Let $F : \mathbb{R}^2 \to \mathbb{R}$ be twice continuosly differentiable and $\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$ y_0 $\Big)$ be stationary point. Then

\n- 1.
$$
H(x_0, y_0) < 0 \Rightarrow \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}
$$
 local maximum
\n- 2. $H(x_0, y_0) > 0 \Rightarrow \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ local minimum
\n- 3. $H(x_0, y_0)$ indefinite $\Rightarrow \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$ saddle point
\n

Positive definite matrices

Some necessary conditions are:

- 1. A is positive definite \Rightarrow A is nonsingular
- 2. A is positive definite $\Rightarrow det(A) > 0$

Theorem 29 Let $A \in \mathbb{R}^{n \times n}$ be symmetric. Then the following are equivalent

- 1. A is positive definite
- 2. $det(A_r) > 0$ for $r = 1, 2, ..., n$
- 3. A can be reduced to upper triangular form using only type III row operations, and the pivot elements will all be positive
- 4. There exist a lower triangular matrix L with positive diagonal elements such that

$$
A = LL^T
$$

called it Cholesky decomposition

5. There exist nonsingular matrix B such that

$$
A = B^T B
$$

Jordan canonical/Normal form

The aim is to find a nonsingular $T \in \mathbb{C}^{n \times n}$ such that $T^{-1}AT = J$, where $A \in \mathbb{C}^{n \times n}$ and J has a simple form.

The simple matrix Y is the matrix pf the linear map $A: \mathbb{C}^n \to \mathbb{C}^n$ with respect to the basis $\{t_1, t_2, ..., t_n\}.$

A psecific case is the diagonal matrix, but not all matrix are diagonalizable.

Theorem 30 Let $A \in \mathbb{C}^{n \times n}$. There exists a nonsingular $T \in \mathbb{C}^{n \times n}$ such that $T^{-1}AT = J$, with

$$
J = \begin{pmatrix} j_1 & 0 & \cdots & 0 \\ 0 & j_2 & 0 & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & j_n \end{pmatrix}
$$

a blockdiagonal matrix with diagonal blocks j_i of the form

$$
j_i = \lambda I + N
$$

where I is an identity matrix and N has the form

$$
N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}
$$

and λ is an eigenvalue of A. The matrix J is called the Jordan Normal form of A.

Note:

- *J* is just the matrix of $A: \mathbb{C}^n \to \mathbb{C}^n$ with respect to a suitable basis of \mathbb{C}^n
- It is possible that a block j_i is 1×1 . In that case it has the form $j_i = \lambda$, where λ is an eigenvalue of A.

Theorem 31 Dimension theorem For a linear map $A: V \rightarrow V$ we have

 $dim V = dim N(A) + dim R(A)$

Note: The $\dim N(A - \lambda I)$ is equal to the number of linearly independent eigenvectors associeted with λ

Definition 26 Let $\lambda_1, \lambda_2, ..., \lambda_k$ be the distict eigenvalues of A. We will denote

$$
g_i = \dim N(A - \lambda_i I)
$$

The integers $g_1, g_2, ...,_k$ are called **the geometric multiplicities** of the eigenvalues $\lambda_1, \lambda_2, ..., \lambda_k$

Definition 27 Suppose $\lambda_1, \lambda_2, ..., \lambda_k$ are the distinct eigenvalues of A, then the characteristic polynomial is given by

$$
p_A(z) = (-1)^n (z - \lambda_1)^{a_1} (z - \lambda_2)^{a_2} \cdots (z - \lambda_k)^{a_k}
$$

for certain positive integers a_i such that $a_1 + a_2 + \cdots + a_k = n$ The integer a_i is called **agebraic multiplicity** of the eigenvalue λ_i for $i = 1, ..., k$

Note: $g_i \leq a_i$ for $i = 1, ..., k$

Definition 28 Let V be a (complex) vector space, and let $V_1, ..., V_k$ be linear subspaces of V. We define their **sum** as

$$
V_1 + V_2 + \dots + V_k = \{x_1 + x_2 + \dots + x_k \in V \mid x_i \in V_i\}
$$

Definition 29 we will write

$$
V = V_1 \oplus V_2 \oplus \cdots \oplus V_k
$$

if

1. $V =_1 +V_2 + \cdots + V_k$

2. every $x \in V$ can be written as $x = x_1 + \cdots + x_k$ with $x_i \in V_i$ in exactly one way,

i.e: $x = x_1 + x_2 + \cdots + x_k$ with $x_i \in V_i$ and $x = \overline{x_1} + \cdots + \overline{x_k}$ with $\overline{x_i} \in V_i \Rightarrow x_i = \overline{x_i}$ for $i = 1, \dots, k.$

We then say that V is the **direct sum** of $V_1, ..., V_k$

Definition 30 Let $W \subset V$ is a subspace. We call W **A**-invariant if all $x \in W$ we have $Ax \in W$. We write

$$
AW \subset W
$$

/faculty of Science and Engineering 15

Now the jordan form under the condition $a_i = g_i$ $(i = 1, ..., k)$, that is A is diagonalizable since it have lineraly independent eigenvectors, is given by:

that is all Jordan blocks j_i are 1×1 , and these blocks are $\lambda_1(a_1 \text{ times }), \lambda_2(a_2 \text{ times })$ up to $\lambda_k(a_k \text{ times}).$

Definition 31 Let $q(z)$ be a polynomial. We say that **annihilates** A if $q(A) = 0$

Note: By the CH theorem, $p_A(z)$ annihilates A. For a given A there are many polynomials with this property

Theorem 32 Let $A \in \mathbb{C}^{n \times n}$. There exist exactly one **monic polynomial** $p_{min}(z)$ of **min**imum degree that annihilates A

Note:

- $p_{min}(z)$ is called minimum polynomial of A.
- Monic means that the coeficcient of the higher power of z is 1
- the minimum polynomial is unique

Corollary 3 Let $p(z)$ be any polynomial tha annihilates A. Then $p_{min}(z)$ is a divisor of $p(z)$, *i.e.* there eixts $q(z)$ such that

$$
p(z) = q(z)p_{min}(z)
$$

Theorem 33 Let $A \in \mathbb{C}^{n \times n}$. Every eigenvalue of A is a root of $p_{min}(z)$. Conversely, every root of $p_{min}(z)$ is an eigenvalue of A

Let $A \in \mathbb{C}^{n \times n}$ and $\lambda_1, ..., \lambda_k$ be distinct eigenvalues, then $p_{min}(z)$ can be written as

$$
p_{min}(z)\,=\,(z-\lambda_1)^{m_1}(z-\lambda_2)^{m_2}\cdots(z-\lambda_k)^{m_k}
$$

for certain positive integers $m_1, ..., m_k$

Theorem 34 Let $A \in \mathbb{C}^{n \times n}$ and let $\lambda_1, ..., \lambda_k$ be distinct eigenvalues. Let $m_1, ..., m_k$ be the integers for $i = 1, ..., k$ define subspace

$$
V_i = N((A - \lambda_i I)^{m_i})
$$

Then we have

- 1. V_i is $A invariant$
- 2. $\mathbb{C}^{n \times n} = V_1 \oplus V_2 \oplus \cdots \oplus V_k$

Summary:

- 1. The total size of the blocks corresponding to an eigenvalue λ is equal to a, the algebraic multiplicity
- 2. The number of Jordan blocks corresponding to an eigenvalue λ is equal to g, its geometric multiplicity
- 3. the maximum size of blocks corresponding to λ is qual to m, its multiplicity as a root of the minimal polynomial