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Inner Product spaces

Goal: move from Rn to the higher level of any arbitrary real vector space

Definition 1 Inner product V a real vector space. An inner product on V is a function
〈 , 〉 : V × V → R1 that satisfies the three properties:

1. 〈x, x〉 ≥ o ∀x ∈ V and 〈x, x〉 = 0 ⇔ x = 0

2. 〈x, y〉 = 〈y, x〉 ∀x, y ∈ V

3. 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 ∀αβ ∈ R , x, y, z ∈ V

Definition 2 Inner product space Real vector space V together with an inner product 〈 , 〉

Note:

• Norm of v ∈ V : ‖v‖ = 〈v, v〉1/2 and

• If v, u are orthogonal than 〈v, u〉 = 0

Exemples:

1. V = Rn, 〈x, y〉 := xT y (scalar product)

2. Rm×n 〈A,B〉 =
∑n

i=1

∑m
j=1AijBij

3. V = C[a, b] 〈f, g〉 :=
∫ b
a f(x)g(x)dx

4. Pn =
{
p(x)|p(x) = p0 + p1x+ · · ·+ pn−1x

n−1} real polynomials of degree at most n−1.
Take x1, x2, ..., xn ∈ R n distinct reals.
Inner Product on Pn:

〈p, q〉 :=
n∑
i=1

p(xi)q(xi)

Theorem 1 Pythagoras Theorem Let u, v ∈ V be orthogonal. Then

‖u+ v‖2 = ‖u‖2 + ‖v‖2

1V × V means cartesian product
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u+ v

v

u

Note: For A ∈ Rm×n ‖A‖ = (trATA)1/2

Definition 3 Projection For arbitrary (V, 〈 , 〉) we define for given u, v

p : =
〈u, v〉
‖v‖

· v

‖v‖
= α · unit vector

Projection of u onto v

u

vp

The concept of vector projection indeed gives te following two geometric properties:

1. u− p and p are orthogonal

2. u = p ⇔ ∃β ∈ R such that u = βv

Theorem 2 Cauchy-Schwarz Let (V, 〈 , 〉) be an inner product space and let u, v ∈ V then

| 〈u, v〉 | ≤ ‖u‖ · ‖v‖

There, equality holds if and only if u and v are linearly dependent

Now we can also define the angle between two vectors u, v ∈ V with V be arbitrary inner
product space. Since | 〈u, v〉 | ≤ ‖u‖‖v‖, we have

−1 ≤ 〈u, v〉
‖u‖‖v‖

≤ 1

whose angle: θ ∈ [−π, π] such that

cos θ =
〈u, v〉
‖u‖‖v‖
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General Normed spaces (V, ‖.‖)

Theorem 3 Let 〈 , 〉 be an inner product on V . For v ∈ V , define

‖v‖ =
√
〈v, v〉

Then ‖.‖ is a norm on V

In mathematics, we also define the concept of norm on a real vector space

Definition 4 Let V be a real vector space. A norm on V is a function ‖.‖ : V → R that
satisfies the following properties:

1. ‖v‖ ≥ 0 ∀v ∈ V and ‖v‖ = 0⇔ v = 0

2. ‖αv‖ = |α|‖v‖ ∀α ∈ R, v ∈ V

3. ‖v + w‖ ≤ ‖v‖+ ‖w‖ ∀v, w ∈ V (triangle inequality)

If ‖.‖ is a norm of V , then the pair (V, ‖.‖) is called a normed linear space

Examples

1. V ∈ Rn for v =


v1
v2
...
vn

 define ‖v‖ =
∑n

i=1 |vi| This is a norm on Rn. We often denote

it by ‖ ‖1, ”1 norm”

2. V = Rn, ‖v‖ = maxi=1,...,n |vi| it is also a norm, denoted by ‖ ‖∞, or infinity norm

3. V = C[a, b], ‖f‖∞ = maxx∈[a,b] |f(x)|

4. V = C[a, b], ‖f‖1 =
∫ b
a |f(x)|dx

5. V = Rn, ‖v‖ =
(∑n

i=1 |vi|P
)1/P

, P-norm

Theorem 4 Let V be a real linear space and let ‖.‖ be a norm on V . Then there exists an
inner product 〈 , 〉 on V such that

〈v, v〉1/2 = ‖v‖ ∀v ∈ V

if and only if

2‖u‖2 + 2‖v‖2 = ‖u+ v‖2 + ‖u− v‖2 ∀u, v ∈ V

Definition 5 Let x, y be vectors in a normed linear space. The distance between x, y is
defined to be the number ‖y − x‖
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Orthonormal sets

Recall: the standard basis in Rn:

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , · · · , en =


0
0
...
1

 ,

Definition 6 Let V be an inner product space with inner product 〈u, v〉. Let v1, ..., vn ∈ V
be all nonzero. The set {v1, ..., vn} is called orthogonal if 〈vi, vj〉 = 0 ∀i 6= j.
It is called orthonormal if ‖vi‖ = 1 for i = 1, 2, ..., n

δij =

{
1 i = j

0 i 6= j
Kronecker delta symbol

Note: {v1, ..., vn} is an orthonormal set iff2 〈vi, vj〉 = δij

Definition 7 An orthonormal set of vectors is an orthogonal set of unit vectors

Theorem 5 orthogonal set and linearly independent If {v1, ..., vn} is an orthogonal set,
then v1, ..., vn are linearly independent

Note: Suppose (V, 〈 , 〉) inner product space, let {u1, ..., un} be orthonormal set in V .
Since u1, ...un are linearly independent and span the subspace S := span(u1, ..., un), the
set {u1, ..., un} is a basis of S

Definition 8 We call {u1, ..., un} an orthonormal basis of S

Theorem 6 Let {u1, ..., un} be an orthonormal basis of the inner product space V . Let v ∈ V
then

v =
n∑
i=1

〈v, ui〉 · ui

〈v, ui〉 is the coordinates of V with respect to the basis {u1, ..., un}

Theorem 7 Let {u1, ..., un} be an orthonormal basis of V . Let u =
∑n

i=1 aiui and v =∑n
i=1 biui be two vectors in V . Then the inner product of u and v is equal to

〈u, v〉 =
n∑
i=1

aibi
3

Corollary 1 Formula of Parseval Let {u1, ..., un} be an orthonormal basis of V and v =∑n
i=1 ciui any vector in V . Then it norm is equal to

‖v‖ =

(
n∑
i=1

c2i

)1/2

Note that the RHS was the old norm of the coordinate vector c =

c1...
cn

 ∈ Rn

2if and only if
3scalar product aT b
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Least squares problem

Recall the previous least square problem:
Given A ∈ Rm×n and b ∈ Rm, find x̂ ∈ Rn such that ‖Ax̂− b‖2 is minimal.

More mathematical: minimize the function r : Rn → [0,∞) defined by r(x) = ‖Ax− b‖2.

Geometric interpretation: find the orthogonal projection p of b onto the surface R(A), by
using the normal equation: ATAx̂ = AT b.
Under the additioanl assumption rank(A) = n (i.e. A is injective) we know that ATA non
singular, in that case x̂ is unique and given by x̂ = (ATA)−1AT b.

if the columns of A are an orthonormal set, then ATA = I4 so x̂ = AT b and the projec-
tion p equal

p = AAT b

this is called the projector onto R(A)

Theorem 9 Let S be a finite dimensional subspace of V and {u1, ..., un} an orthonormal
basis of S. For x ∈ V define

p =
n∑
i=1

〈x, ui〉ui

then p ∈ S and x− p ∈ S⊥

Theorem 10 p =
∑n

i=1 〈x, ui〉ui is the vector in S that is closet to x. That is, for any y ∈ S
with y 6= p we have

‖x− y‖ > ‖x− p‖

Definition 10 orthogonal projection The vector p is called the orthogonal projection of x
onto S

Corollary 2 Let S be a nonzero subspace of Rm and let b ∈ Rm. If {u1, ..., uk} is an or-
thonormal basis for S and U = (u1, ..., uk), then the projection p of b onto S is given by

p = UUT b

Note: the last few theorems are use in many application, but most commonly are used for
approximate a function. The process consist into project a function onto a subspace.

4

Definition 9 An n × n matrix is said to be orthogonal matrix if the column vectors of the matrix form an
orthonormal set in Rn

Theorem 8 An n× n matrix Q is orthogonal iff QtQ = I
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Fourier approximation

Definition 11 The nth order Fourier approximation of f(x) Let n be a positive integer.
A trygonometric function of degree n is any function of the form

t∗n(x) =
a0
2

+

n∑
k=1

ak cos(kx) + bk sin(kx)

where ai, bi ∈ R. a0 = 1
π

∫ b
a f(x)dx and ak = 〈f, cos(kx)〉 = 1

π

∫ b
a f(x)cos(kx)dx, bk =

〈f, sin(kx)〉

Aim: given n, find ai, bi so that ‖f − tn‖ is minimal
The real numbers ai, bi are called the Fourier coefficients of f

Gram-Schmidt Orthogonalization

General Problem: Given an inner product space (V, 〈 , 〉). Let S be a finite dimensional
subspace V . Find an orthonormal basis for it.

Theorem 11 The Gram-Schidt Process Let {x1, ..., xn} be a basis for the inner product
space V . Let

u1 =

(
1

‖x1‖

)
x1

and define u2, ..., un recursively by

uk+1 =
1

‖xk+1 − pk‖
(xk+1 − pk) for k = 1, ..., n− 1

where

pk = 〈xk+1, u1〉u1 + 〈xk+1, u2〉u2 + · · ·+ 〈xk+1, uk〉uk

=
k∑
i=1

〈xk+1, ui〉ui

is the projection of xk+1 onto Span(u1, ..., uk). Then the set

{u1, ..., un}

is an orthonormal basis for V

Theorem 12 Let A ∈ Rn×n be nonsingular. Then there exists an orthogonal matrix Q ∈
Rn×n and an upper triangular matrix R ∈ Rn×n with positive diagonal elements such that

A = QR

Theorem 13 QR factorization Let A ∈ Rm×n, have rank(n), columns of A is linearly
independent. Then, there exists Q ∈ Rm×n whose columns form an orthonormal set in Rm,
and R ∈ Rn×n upper triangular with positive diagonal elements such that

A = QR
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Remark: Q is called column-orthogonal. Here, follow QR factorization of a R3×3 matrix in
term of column vectors:

[
a1 a2 a3

]
=
[
q1 q2 q3

] r11 r12 r13
0 r22 r23
0 0 r33


Theorem 14 If A is an m×n matrix of rank n, then the least squares solution of Ax = b is
given by x̂ = R−1QT b, where Q and R are the matrices obtained from the QR factorization.
The solution x̂ may be obtained by using back sobstitution to solve Rx = QT b

Eigenvalues and eigenvectors

Remember the definition from LA1, here we will write only the new theorems, definition,facts
or we rewrite previous theorem in a better way

For A ∈ Rn×n the characteristic polynomial is p(s) = det(A − sI). This is always a nth
degree polynomial with real coefficients. In fact:

p(s) = (−1)nsn + pn−1s
n−1 + · · ·+ p1s+ p0

with pi ∈ R.
Fact: λ eigenvalue ⇔ λ̄ eigenvalue. Two explanations for this (only true if A ∈ Rn×n):

1. pA(s) is a real polynomial. If λ root of pA(s) ⇔ λ̄ is a root of pA(s)

2. λ eigenvalue of A, then Ax = λx ⇔ Āx = λ̄x ⇔ Āx̄ = λ̄x̄ ⇔ Ax̄ = λ̄x̄ where λ̄
eigenvalue, x̄ eigenvector.

Product: Since p(s) = (λ1 − s)(λ2 − s) · · · (λn − s) and p(s) = det(A− SI) we have

det(A) = p(0) = λ1λ2 · · ·λn

Sum: for given A let tr(A) =
∑n

i=1Aii then the trace of A it is also equal to the sum of
eigenvalues: tr(A) = λ1 + · · ·+ λn

Similarity of matrices

Definition 12 A,B ∈ Rn×n, or in Cn×n if there exists a nonsingular S ∈ Cn×n such that

B = S−1AS

Recall: If α : Cn → Cn is a linear map and {v1, v2, ..., vn} a basis of Cn then the matrix of
α with respect to {v1, ..., vn} is defined as A ∈ Cn×n, M = (aij), where the aij satisfy

α(v1) = a11v1 + a21v2 + · · ·+ an1vn

α(v2) = a12v1 + a22v2 + · · ·+ an2vn
...

...

α(vn) = a1nv1 + a2nv2 + · · ·+ annvn

Now defined by α(x) = Ax. So, A and B are similar means: they define one and the same
linear map, or: they are matrices of one and the same linear map.
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Theorem 15 Let A,B ∈ Rn×n. If A and B are similar, they have the same characteristic
polynomial and the same eigenvalues.

Theorem 16 Cayley-Hamilton Let A be an n× n matrix, and let pA(t) = det(A− tI) be
the corresponding characteristic polynomial. Then, pA(A) = 0.

Note:

1. I, A,A2, ..., An are linearly dependent, thus

pA(A) = An + pn−1A
n−1 + · · ·+ p1A+ p0I = 0

Hermitian matrices

Definition 13 Field set k with two binary operations, called addition and multiplication,
satisfying some axioms.

Complex scalar product:

z =

z1...
zn

 , w =

w1
...
wn

→ n∑
i=1

z̄iwi

Note: zT is equal to zH and it is called Hermitian transponse

Definition 14 Norm on Cn induce by zHw:

‖z‖2 = zHz =
n∑
i=1

z̄izi =
n∑
i=1

|zi|2

Definition 15 Complex inner product space Let V be a complex vector space. An inner
product on V is a map 〈 , 〉 : V × V → C and satisfying the following conditions:

1. 〈z, z〉 ≥ 0 ∀z ∈ V and 〈z, z〉 = 0 ⇔ z = 0

2. 〈z, w〉 = 〈w, z〉 ∀z, w ∈ V

3. 〈αz + βw, u〉 = α 〈z, u〉+ β 〈w, u〉 ∀α, β ∈ C ∀z, w, u ∈ V

All the results on real inner product spaces carry over to complex ones

• z, w ∈ V orthogonal if 〈z, w〉 = 0

• norm induced by inner product: ‖z‖2 = 〈z, z〉

• orthonormal set in V : {z1, ..., zn} such that ‖zi‖ = 1 ∀i and 〈zi, zj〉 = 0 i 6= j

• {z1, ..., zn} are linearly independent
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• Parseval theorem: if {w1, ..., wn} orthonormal basis of V , and z ∈ V , then

z =

n∑
i=1

〈z, wi〉wi

and

‖z‖2 =
n∑
i=1

| 〈z, wi〉 |2

Definition 16 Norm V a complex vector space. A norm on V is a map ‖.‖ : V → R such
that

1. ∀z ∈ C ‖z‖ ≥ 0 and ‖z‖ = 0 ⇔ z = 0

2. ∀α ∈ C ∀z ∈ V ‖αz‖ = |α|‖z‖

3. ∀z, w ∈ V ‖z + w‖ ≤ ‖z‖+ ‖w‖

Complex matrices

Cm×n: the complex vector space of all m× n matrices with entries in C.

Definition 17 Hermetian transponse For given M = (mij) , M = (mij) Hermetian
transponse of M :

MH = M
T

Inner product on Cm×n:

〈M,N〉 = tr(MHN) =
m∑
i=1

n∑
j=1

mijnij

Basic Rules:

• (AH)H = A

• (αA+ βB)H = αAh + βBH

• (AB)H = BHAH

Definition 18 Hermitian Matrix A matrix M is said to be Hermitian if M = MH

Note: every symmetric matrices is Hermitian. If M is a matrix with real entries, then
MH = MT

Theorem 17 Let A ∈ Cn×n be Hermitian. Then all its eigenvalues are real. Eigenvectors
belonging to distinct eigenvalues are orthogonal

Definition 19 U ∈ Cn×n is called unitary if its columns form an orthonormal set in Cn

Theorem 18 Schur’s Theorem For each n× n matrix A, there exists a unitary matrix U
such that Λ is upper triangular
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Theorem 19 Schur decomposition Let A ∈ Cn×n. There exists a unitary U ∈ Cn×n and
an upper triangular T ∈ Cn×n such that

UHAU = T

or equivalently
A = UTUH

called Schur decomposition or factorization

Theorem 20 If A is Hermitian then there exists a unitary U that diagonalizes A and a real
diagonal matrix Λ such that

UHAU = Λ

or equivalently
A = UΛUH

So, for a Hermitian matrix A ∈ Cn×n there exists an othonormal basis Cn of eigenvectors of
A

Theorem 21 Real Schur Decomposition Let A ∈ Rn×n. There exist an orthogonal Q ∈
Rn×n and a quasi upper triangular matrix T ∈ Rn×n such that

A = QTQT

where

T =


B1 · · · · · · · · ·
0 B2 · · · · · ·
...

. . .
. . .

...
0 · · · 0 Bk


and where Bi’s are either 1× 1 or 2× 2 matrices.

We determined as follows:

• Compute all eigenvalues λ1, ..., λn of A

• Suppose λ1, ..., λr are not real and λr+1, ..., λn are real

• λ1, ..., λr appears in complex conjugate pairs, says λ1, λ1, λ2, λ2, ..., λr/2, λr/2

• Suppose λj = aj + ibj and λj = aj − ibj .

This gives r/2 2× 2 matrices Bj =

(
aj bj
−bj aj

)
• The remaining real λr+1, ..., λn gives n− r 1× 1 matrices Bj = λj

Theorem 22 Let A ∈ Rn×n be symmetruc. There exists an orthogonal matrrix Q ∈ Rn×n
and a real diagonal matrix Λ ∈ Rn×n such that

A = QΛQT

Definition 20 Let A ∈ Cn×n. A is called normal if

AHA = AAH

Theorem 23 Let A ∈ Cn×n. There exixts unitary U ∈ Cn×n and a diagonal matrix Λ ∈
Cn×n such that A = UΛUH if and only if A is normal
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Singular value decomposition

Let A ∈ Rm×m. For the moment let assume n ≤ m (A is tall). We call A rank deficient if
rank(A) < n.
Often we want to know: how close is A from being rank deficient.

Theorem 24 Let A ∈ Rm×m, n ≤ m. There exist orthogonal matrices U ∈ Rm×m and
V ∈ Rm×m and real numbers

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0

Such that A = UΣV T and σi =
√
λi for i = 1, .., n, where

Σ =



σ1 0 · · · 0

0 σ2
. . .

...
...

. . .
. . . 0

0 · · · 0 σn
−− −− −− −−

0(m−n)×n


Moreover, if rank(A) = r then

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

σr+1 = σr+2 = · · · = σn = 0

The numbers of σi are unique. They are called the singular values of A.

Idea: The smallest singular values quantify how close A is to lose a rank.

Some observations on the SVD

1. Given A ∈ Rm×n (m ≥ n) its singular values σ1, ..., σn are unique since σ21, ..., σ
2
n are

the eigenvalues of ATA

2. U and V are not unique

3. Since V TATAV = Λ with σ21, ..., σ
2
n eigenvalues, the columns of V are always eigenvec-

tors of ATA

4. Since AAT = U

(
Σ1

0

)
V TV

(
Σ1 0

)
UT = U

(
Σ2
1 0

0 0

)
UT the columns of U are always

eigenvectors of AAT

5. if A has rank r, then

(a) v1, ..., vr form an orthonormal basis for R(AT )

(b) vr+1, ..., vn form an orthonormal basis for N(A)

(c) u1, ..., ur form an orthonormal basis for R(A)

(d) Ur+1, ..., un forma an orthonormal basis for N(AT )

6. let A ∈ Rm×n and AV = UΣ, then ATuj = σjvj for j = 1, ..., n and ATuj = 0 for
j = n+ 1, ...,m
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Theorem 25 General Let A ∈ Rm×n rank(A) = r (≤ min(n,m)). There exist σ1 ≥ σ2 ≥
· · · ≥ σr > 0 and orthogonal U ∈ Rm×m, V ∈ Rn×n such that

A = U

(
Σ1 0r×n−r

0m−r×r 0m−r×n−r

)
V T

Remark: If rank(A) = n (injective) then the 0 matrices on the right are absent. If
rank(A) = m surjective then the 0 matrices on the bottom are absent. If A is square
nonsingular, then all 0 matrices are absent

Application: Given A ∈ Rm×n, rank(A) = r, and 0 ≤ k ≤ r, compute the distance of
A to Mk define by

d(A,Mk) = inf{ ‖A− S‖F |S ∈Mk}

‖.‖F is the Frobenious norm on Rm×n which is define by

‖M‖F =

√√√√ m∑
i=1

n∑
j=1

m2
ij =

√
tr(MTM)

Also find X ∈Mk such that d(A,Mk) = ‖A−X‖F

Theorem 26 Let A ∈ Rm×n and k < r = rank(A). Let Mk = {S ∈ Rm×n | rank(S) ≤ k}.
Let σ1, ..., σr be the non-zero eigenvalues of A, then

d(A,Mk) =
√
σ2k+1 + · · ·+ σ2r

Let A = UΣV T be the SVD of A. Then X = UΣV T where Σ have now the σk+1, ...., σr = 0.
Then X ∈Mk and

‖A−X‖F = d(A,Mk)

X is called the best approximation in Mk of A

Quadratic Form

Definition 21 A quadratic equation in two variables x, y is an equation of the form

ax2 + 2bxy + cy2 + dx+ ey + f = 0 (1)

Equation (1) may be rewritten in the form

(
x y

)(a b
b c

)(
x
y

)
+
(
d e

)(x
y

)
+ f = 0

Let

x =

(
x
y

)
A =

(
a b
b c

)
The term

xTAx = ax2 + 2bxy + cy2

is called the quadratic form associated with (1)
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Definition 22 Let A ∈ Rn×n be symmetric then the expression xTAx with x ∈ Rn is called
the quadratic form associated with A.
It is also define a quadratic function

F : Rn → Rn F (x) = xTAx

Definition 23 Given F : Rn → R, a point x0 ∈ Rn is called stationary if ∂F
∂xi

(x0) = 0 for
i = 1, 2, ..., n

Definition 24 Let A ∈ Rn×n be symmetric

1. A is positive definite if xTAx > 0 x 6= 0 (denoted by A > 0)

2. A negative definite if xTAx < 0 x 6= 0 (denoted by A < 0

3. A ≥ 0, or A is positive semi-definite if xTAx ≥ 0 ∀x ∈ Rn

4. A ≤ 0, or A is negative semi-definite if xTAx ≤ 0 ∀x ∈ Rn

5. A indefinite if xTAx taken both positive as well as negative real values

Theorem 27 Let A ∈ Rn×n be symmetric and λ1, λ2, ..., λn be its real eigenvalues. We have:

1. A > 0 ⇔ λi > 0 i = 1, 2, ..., n

2. A < 0 ⇔ λi < 0 i = 1, 2, ..., n

3. A ≥ 0 ⇔ λi ≥ 0 i = 1, 2, ..., n

4. A ≤ 0 ⇔ λi ≤ 0 i = 1, 2, ..., n

5. A is indefinite ⇔ A has eigenvalues of different sign

Definition 25 Let F : Rn → R be C2. Let x0 be stationary point, the Hessian matrix at
x0 is

H(x0) =


Fx1x1(x0) Fx1x2(x0) · · · Fx1xn(x0)

Fx2x1(x0) Fx2x2(x0)
...

...
. . .

...
Fxnx1 · · · · · · Fxnxn(x0)


Theorem 28 Let F : R2 → R be twice continuosly differentiable and

(
x0
y0

)
be stationary

point. Then

1. H(x0, y0) < 0 ⇒
(
x0
y0

)
local maximum

2. H(x0, y0) > 0 ⇒
(
x0
y0

)
local minimum

3. H(x0, y0) indefinite ⇒
(
x0
y0

)
saddle point
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Positive definite matrices

Some necessary conditions are:

1. A is positive definite ⇒ A is nonsingular

2. A is positive definite ⇒ det(A) > 0

Theorem 29 Let A ∈ Rn×n be symmetric. Then the following are equivalent

1. A is positive definite

2. det(Ar) > 0 for r = 1, 2, ..., n

3. A can be reduced to upper triangular form using only type III row operations, and the
pivot elements will all be positive

4. There exist a lower triangular matrix L with positive diagonal elements such
that

A = LLT

called it Cholesky decomposition

5. There exist nonsingular matrix B such that

A = BTB

Jordan canonical/Normal form

The aim is to find a nonsingular T ∈ Cn×n such that T−1AT = J ,where A ∈ Cn×n and J has
a simple form.
The simple matrix Y is the matrix pf the linear map A : Cn → Cn with respect to the basis
{t1, t2, ..., tn}.
A psecific case is the diagonal matrix, but not all matrix are diagonalizable.

Theorem 30 Let A ∈ Cn×n. There exists a nonsingular T ∈ Cn×n such that T−1AT = J ,
with

J =


j1 0 · · · 0

0 j2 0
...

...
. . .

. . .
...

0 0 0 jn


a blockdiagonal matrix with diagonal blocks ji of the form

ji = λI +N

where I is an identity matrix and N has the form

N =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0 1
0 0 0 0 0


and λ is an eigenvalue of A. The matrix J is called the Jordan Normal form of A.
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Note:

• J is just the matrix of A : Cn → Cn with respect to a suitable basis of Cn

• It is possible that a block ji is 1× 1. In that case it has the form ji = λ, where λ is an
eigenvalue of A.

Theorem 31 Dimension theorem For a linear map A : V → V we have

dimV = dimN(A) + dimR(A)

Note: The dimN(A− λI is equal to the number of linearly independent eigenvectors asso-
cieted with λ

Definition 26 Let λ1, λ2, ..., λk be the distict eigenvalues of A. We will denote

gi = dimN(A− λiI)

The integers g1, g2, ...,k are called the geometric multiplicities of the eigenvalues λ1, λ2, ..., λk

Definition 27 Suppose λ1, λ2, ..., λk are the distinct eigenvalues of A, then the characteristic
polynomial is given by

pA(z) = (−1)n(z − λ1)a1(z − λ2)a2 · · · (z − λk)ak

for certain positive integers ai such that a1 + a2 + · · ·+ ak = n
The integer ai is called agebraic multiplicity of the eigenvalue λi for i = 1, ..., k

Note: gi ≤ ai for i = 1, ..., k

Definition 28 Let V be a (complex) vector space, and let V1, ..., Vk be linear subspaces of V .
We define their sum as

V1 + V2 + · · ·+ Vk = {x1 + x2 + · · ·+ xk ∈ V |xi ∈ Vi}

Definition 29 we will write
V = V1 ⊕ V2 ⊕ · · · ⊕ Vk

if

1. V =1 +V2 + · · ·+ Vk

2. every x ∈ V can be written as x = x1 + · · ·+ xk with xi ∈ Vi in exactly one way,

i.e: x = x1 + x2 + · · · + xk with xi ∈ Vi and x = x1 + · · · + xk with xi ∈ Vi ⇒ xi = xi for
i = 1, ...., k.
We then say that V is the direct sum of V1, ..., Vk

Definition 30 Let W ⊂ V is a subspace. We call W A-invariant if all x ∈ W we have
Ax ∈W . We write

AW ⊂W
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Now the jordan form under the condition ai = gi (i = 1, ..., k), that is A is diagonalizable
since it have lineraly independent eigenvectors, is given by:

J =



λ1
. . .

λ1
λ2

. . .

λ2
. . .

λk
. . .

λk


that is all Jordan blocks ji are 1× 1, and these blocks are λ1(a1 times ), λ2(a2 times ) up to
λk(ak times ).

Definition 31 Let q(z) be a polynomial. We say that annihilates A if q(A) = 0

Note: By the CH theorem, pA(z) annihilates A. For a given A there are many polynomials
with this property

Theorem 32 Let A ∈ Cn×n. There exist exactly one monic polynomial pmin(z) of min-
imum degree that annihilates A

Note:

• pmin(z) is called minimum polynomial of A.

• Monic means that the coeficcient of the higher power of z is 1

• the minimum polynomial is unique

Corollary 3 Let p(z) be any polynomial tha annihilates A. Then pmin(z) is a divisor of p(z),
i.e. there eixts q(z) such that

p(z) = q(z)pmin(z)

Theorem 33 Let A ∈ Cn×n. Every eigenvalue of A is a root of pmin(z). Conversely, every
root of pmin(z) is an eigenvalue of A

Let A ∈ Cn×n and λ1, ..., λk be distinct eigenvalues, then pmin(z) can be written as

pmin(z) = (z − λ1)m1(z − λ2)m2 · · · (z − λk)mk

for certain positive integers m1, ...,mk

Theorem 34 Let A ∈ Cn×n and let λ1, ..., λk be distinct eigenvalues. Let m1, ...,mk be the
integers for i = 1, ..., k define subspace

Vi = N ((A− λiI)mi)

Then we have
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1. Vi is A− invariant

2. Cn×n = V1 ⊕ V2 ⊕ · · · ⊕ Vk

Summary:

1. The total size of the blocks corresponding to an eigenvalue λ is equal to a, the algebraic
multiplicity

2. The number of Jordan blocks corresponding to an eigenvalue λ is equal to g, its geometric
multiplicity

3. the maximum size of blocks corresponding to λ is qual to m, its multiplicity as a root
of the minimal polynomial
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