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Inner Product spaces
Goal: move from R" to the higher level of any arbitrary real vector space

Definition 1 Inner product V a real vector space. An inner product on V is a function
(,):V xV —R! that satisfies the three properties:

1. (x,z) >oVz eV and (z,z) =0 =0
2. (w,y) = (y,7) Yo,y €V

3. (ax + By, z) = alx,z) + (y,z) VaB € R, z,y,z € V
Definition 2 Inner product space Real vector space V together with an inner product (, )

Note:
e Norm of v € V: ||o|| = <v,v>1/2 and
e If v, u are orthogonal than (v,u) =0
Exemples:
1. V=R" (z,y) := 2Ty (scalar product)
2. R™™ (A, B) = 37 3700 AijBij
3.V =Cla,t] {f,9) := [ f()g(a)dw
4. P, = {p(m)\p(m) =po+prx+--- +pn_1a:"_1} real polynomials of degree at most n—1.

Take x1, o, ..., z, € R n distinct reals.
Inner Product on P,:

Theorem 1 Pythagoras Theorem Let u,v € V be orthogonal. Then

o+ ol|* = [lull® + [[o]|?

'V x V means cartesian product
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U+ v

Note: For A € R™*" ||A|| = (tr AT A)1/2

Definition 3 Projection For arbitrary (V,(,)) we define for given u,v

[l ol

= « - unit vector

Projection of u onto v

p v

The concept of vector projection indeed gives te following two geometric properties:
1. w—p and p are orthogonal

2. u=p < 30 € R such that u = pv
Theorem 2 Cauchy-Schwarz Let (V,(, )) be an inner product space and let u,v € V then
| (w0 | < ] - ]l
There, equality holds if and only if w and v are linearly dependent

Now we can also define the angle between two vectors u,v € V with V be arbitrary inner
product space. Since | (u,v) | < [Jul|||v]|, we have

{u, v)
— ullllol]

<1

whose angle: 6 € [—7, 7| such that

{u, v)

cosf = ———
[[wllflv]]
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General Normed spaces (V,|.]|)
Theorem 3 Let (, ) be an inner product on V. For v € V, define
[oll = v/({v,v)
Then ||.|| is a norm on V
In mathematics, we also define the concept of norm on a real vector space

Definition 4 Let V' be a real vector space. A morm on V is a function ||.| : V — R that
satisfies the following properties:

1 v >0VYv eV and |jv]| =0 v =0
2. |lav|| = |a|||v]| Va e R, v € V
3. v+ wl| < ||v]| + ||w]] YVo,w € V' (triangle inequality)

If ||.|| is @ norm of V', then the pair (V, ||.||) is called a normed linear space

Examples
U1
v2
1. VeR"forv= | . | define ||v|]| = 3/, |v;| This is a norm on R". We often denote
Un

it by | ||1, ”1-norm”
2. V. =R", ||v|| = max;—1,.. n |vi| it is also a norm, denoted by || ||o, or infinity norm
3. V = Cla,b], |fllec = maxyeay | f(2)]
4.V = Clabl, If | = J;1f (2)lde

5. V =R", |lu] = (X0, |o:") ", P-norm

Theorem 4 Let V be a real linear space and let |.|| be a norm on V. Then there exists an
inner product (, ) on V such that

() = o] WweV

if and only if
2/l + 2(jv)* = lu+o[* + [lu = ol Vu,veV

Definition 5 Let x,y be vectors in a normed linear space. The distance between x,y is
defined to be the number ||y — x|
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Orthonormal sets

Recall: the standard basis in R":

1 0 0

0 1 0
€1 = . , €2 = . y Ty Ep = . )

0 0 1

Definition 6 Let V' be an inner product space with inner product (u,v). Let vy,...,u, € V
be all nonzero. The set {v1,...,v,} is called orthogonal if (vi,v;) =0 Vi # j.
It is called orthonormal if ||vi]| =1 fori=1,2,..,n

1 i—
0ij = { Z ‘7 Kronecker delta symbol
0 i#J

Note: {v1,...,0,} is an orthonormal set iff? (v;,v;) = &;;

Definition 7 An orthonormal set of vectors is an orthogonal set of unit vectors

Theorem 5 orthogonal set and linearly independent If {vy,...,v,} is an orthogonal set,
then v1,...,v, are linearly independent

Note: Suppose (V,(,)) inner product space, let {uj,...,u,} be orthonormal set in V.
Since wuq,...u, are linearly independent and span the subspace S := span(ui,...,u,), the
set {u1,...,un} is a basis of S

Definition 8 We call {uy,...,un} an orthonormal basis of S

Theorem 6 Let {uy,...,un} be an orthonormal basis of the inner product space V.. Letv € V
then

n

v:Z<v,ui>‘ui

i=1
(v,u;) is the coordinates of V with respect to the basis {uy, ..., un}

Theorem 7 Let {ui,...,u,} be an orthonormal basis of V. Let u = Y ;" au; and v =
o, biug be two vectors in V.. Then the inner product of w and v is equal to

(u,v) = i a;b;3
i=1

Corollary 1 Formula of Parseval Let {uy,...,u,} be an orthonormal basis of V and v =
Som ciug any vector in V.. Then it norm is equal to

n 1/2
loll = (Z C?)
=1
1

Note that the RHS was the old norm of the coordinate vectorc= | : | € R"

Cn

2if and only if
3scalar product aTb
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Least squares problem

Recall the previous least square problem:
Given A € R™*" and b € R™, find & € R" such that ||AZ — b||? is minimal.

More mathematical: minimize the function r : R* — [0, 00) defined by r(x) = ||Az — b||%.

Geometric interpretation: find the orthogonal projection p of b onto the surface R(A), by
using the normal equation: AT Az = ATb.

Under the additioan] assumption rank(A) = n (i.e. A is injective) we know that A7 A non
singular, in that case 2 is unique and given by & = (AT A)~1ATb.

if the columns of A are an orthonormal set, then ATA = I* so & = ATb and the projec-
tion p equal
p=AATD

this is called the projector onto R(A)

Theorem 9 Let S be a finite dimensional subspace of V and {us,...,u,} an orthonormal
basis of S. For x € V define

n
i=1
thenp € S cmd:z:—pESL

Theorem 10 p =" | (x,u;) u; is the vector in S that is closet to x. That is, for anyy € S
with y # p we have

lz =yl > llz = pli

Definition 10 orthogonal projection The vector p is called the orthogonal projection of x
onto S

Corollary 2 Let S be a nonzero subspace of R™ and let b € R™. If {uy,...,ux} is an or-
thonormal basis for S and U = (uy, ..., uy), then the projection p of b onto S is given by

p=UUTD

Note: the last few theorems are use in many application, but most commonly are used for
approximate a function. The process consist into project a function onto a subspace.

4

Definition 9 An n x n matriz is said to be orthogonal matriz if the column vectors of the matriz form an
orthonormal set in R™

Theorem 8 An n x n matriz Q is orthogonal iff Q'Q = I
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Fourier approximation

Definition 11 The nth order Fourier approximation of f(z) Letn be a positive integer.
A trygonometric function of degree n is any function of the form

tr(x) = 20 4 Z ay, cos(kx) + by sin(kx)

2
k=1

where a;,b; € R. ap = %f;f(m)dx and ap = (f,cos(kx)) = %f;f(m)cos(kx)dx, by, =
(f,sin(kz))

Aim: given n, find a;, b; so that ||f — t,|| is minimal
The real numbers a;, b; are called the Fourier coefficients of f
Gram-Schmidt Orthogonalization

General Problem: Given an inner product space (V,(, )). Let S be a finite dimensional
subspace V. Find an orthonormal basis for it.

Theorem 11 The Gram-Schidt Process Let {x1,...,x,} be a basis for the inner product

space V. Let
1
uyp = () I
1]l

(ajk-‘rl_pk) fork=1,.,n-1

and define ua, ..., uy recursively by

1

Upy) = —————
T 2k — pal

where

Pk = (Tht1, 1) w1 + (Tpg1, u2) Uz + -+ + (Tpg1, Uk) Uk

k
= (@1, u) ui

=1
is the projection of xxy+1 onto Span(ui,...,ux). Then the set
{u, ..., un}
is an orthonormal basis for V

Theorem 12 Let A € R™"™ be nonsingular. Then there exists an orthogonal matrix Q) €
R™™ and an upper triangular matriz R € R™™™ with positive diagonal elements such that

A=QR

Theorem 13 QR factorization Let A € R"™*"™ have rank(n), columns of A is linearly
independent. Then, there exists Q@ € R™*™ whose columns form an orthonormal set in R™,
and R € R™"™ upper triangular with positive diagonal elements such that

A=QR
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Remark: @ is called column-orthogonal. Here, follow QR factorization of a R3*3 matrix in
term of column vectors:

T Ti2 713
a1 a2 a3l =[q g 3] | 0 7ra2 7o3
0 0 33

Theorem 14 If A is an m X n matriz of rank n, then the least squares solution of Ax = b is
given by & = R71QTb, where Q and R are the matrices obtained from the QR factorization.
The solution & may be obtained by using back sobstitution to solve Rx = QTb

Eigenvalues and eigenvectors

Remember the definition from LA1, here we will write only the new theorems, definition,facts
or we rewrite previous theorem in a better way

For A € R™ " the characteristic polynomial is p(s) = det(A — sI). This is always a nth
degree polynomial with real coefficients. In fact:

p(s) = (=1)"s" 4+ pp_18" L+ -+ p1s+po

with p; € R. .
Fact: ) eigenvalue < ) eigenvalue. Two explanations for this (only true if A € R™*™):

1. pa(s) is a real polynomial. If A root of pa(s) < X is a root of pa(s)

2. X eigenvalue of A, then Az = \z & Az = \x & AT = \& & AT = A% where )
eigenvalue, T eigenvector.

Product: Since p(s) = (A1 — s)(A2 — s) -+ (A, — s) and p(s) = det(A — SI) we have
det(A) = p(0) = M2~ Ay
Sum: for given A let tr(A) = > | Ai; then the trace of A it is also equal to the sum of
eigenvalues: tr(A) =M\ + -+ Ay
Similarity of matrices
Definition 12 A, B € R™*", or in C"*™ if there exists a nonsingular S € C™*™ such that
B=S"AS

Recall: If o : C" — C" is a linear map and {vy, v, ...,v,} a basis of C" then the matrix of
a with respect to {v1,...,v,} is defined as A € C"*", M = (a;;), where the a;; satisfy

a(vy) = a1vr + a21v2 + - -+ + apivy

a(vy) = ajav1 + agv2 + - -+ + anavy

a(vy) = a1pv1 + agpve + -+ - + appoy

Now defined by a(z) = Az. So, A and B are similar means: they define one and the same
linear map, or: they are matrices of one and the same linear map.
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Theorem 15 Let A, B € R™™™. If A and B are similar, they have the same characteristic
polynomial and the same eigenvalues.

Theorem 16 Cayley-Hamilton Let A be an n X n matriz, and let ps(t) = det(A — tI) be
the corresponding characteristic polynomial. Then, ps(A) = 0.

Note:

1. I,A, A% ..., A" are linearly dependent, thus

pa(A) = A" +pp 1 A" 4+ prA4pol =0

Hermitian matrices

Definition 13 Field set k with two binary operations, called addition and multiplication,
satisfying some axioms.

Complex scalar product:

<1 w1

n
=, w= —>§ Ziw;
i—1

Zn Wn
Note: z7 is equal to z and it is called Hermitian transponse

Definition 14 Norm on C" induce by z7w:

n n

22 =272 =) "5z =) |af
=1 =1

Definition 15 Complex inner product space Let V be a complex vector space. An inner
product on' V' is a map (, ) : V x V — C and satisfying the following conditions:

1. (z,2) >0VzeV and (2,2) =0 < z2=0

2. (z,w) = (w,z) Vz,w eV
3. (az+ pw,u) = a(z,u) + B (w,u) Yo, € CVz,w,u €V
All the results on real inner product spaces carry over to complex ones
e z,w € V orthogonal if (z,w) =0
e norm induced by inner product: ||z||? = (z, z)
e orthonormal set in V: {z1,..., 2z, } such that ||z;|| =1 Vi and (z;,2;) =017 # j

e {z,...,z,} are linearly independent
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e Parseval theorem: if {wy,...,wy,} orthonormal basis of V', and z € V, then

n

z= Z (z,w;) w;

i=1

and
n
2 =D |z wi) 2
i=1
Definition 16 Norm V a complex vector space. A norm on'V is a map ||.|| : V — R such

that
1.VzeClz[[>0and ||z]| =0 z2=0
2. VYae CVzeV |az| = |al|z]

3. Vz,w eV ||z4+w| < |z]| + ||w]|

Complex matrices

C™*™: the complex vector space of all m x n matrices with entries in C.

Definition 17 Hermetian transponse For given M = (m;;) , M = (m;;) Hermetian
transponse of M :
MH =31"
Inner product on C™*™:
m n
(M,N) =tr(MPN) =" "min;
i=1 j=1

Basic Rules:
o (AMHYH = A
e (aA+pB)H =aAl + 3BH
o (AB)H = BH AH
Definition 18 Hermitian Matrix A matriz M is said to be Hermitian if M = M

Note: every symmetric matrices is Hermitian. If M is a matrix with real entries, then
MH — MT

Theorem 17 Let A € C"*™ be Hermitian. Then all its eigenvalues are real. FEigenvectors
belonging to distinct eigenvalues are orthogonal

Definition 19 U € C™"*" is called unitary if its columns form an orthonormal set in C"

Theorem 18 Schur’s Theorem For each n x n matriz A, there exists a unitary matriz U
such that A is upper triangular
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Theorem 19 Schur decomposition Let A € C"*". There exists a unitary U € C"*™ and
an upper triangular T € C™*™ such that

UMAU =T
or equivalently
A=UuTU?

called Schur decomposition or factorization

Theorem 20 If A is Hermitian then there exists a unitary U that diagonalizes A and a real
diagonal matrix A such that

UHAU = A

or equivalently
A=UANU"

So, for a Hermitian matrix A € C™*" there exists an othonormal basis C™ of eigenvectors of
A

Theorem 21 Real Schur Decomposition Let A € R™"™™. There exist an orthogonal QQ €
R™ ™ and a quasi upper triangular matriz T € R™*™ such that

A=QrQT
where
By -
0 By
T = L
0 -~ 0 B

and where B;’s are either 1 x 1 or 2 x 2 matrices.

We determined as follows:

Compute all eigenvalues Ay, ..., A, of A

Suppose A1, ..., A, are not real and Apy1,..., A\, are real
e )i, ..., )\ appears in complex conjugate pairs, says A1, A1, A2, Ao, ..., Arj2s Arj2
Suppose \; = a; + ib; and )\7 = a; — ib;.

This gives r/2 2 x 2 matrices B; = < b 2]>
—b; j

e The remaining real A\q41,..., A\, gives n — 7 1 x 1 matrices Bj = ),

Theorem 22 Let A € R™™™ be symmetruc. There exists an orthogonal matrriz @@ € R™*™
and a real diagonal matriz A € R™™ such that

A=QAQ"
Definition 20 Let A € C"*™. A is called normal if
AT A = AAT

Theorem 23 Let A € C"*™. There exizts unitary U € C™™ and a diagonal matrix A €
C™" such that A= UAUY if and only if A is normal
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Singular value decomposition

Let A € R™™. For the moment let assume n < m (A is tall). We call A rank deficient if
rank(A) < n.
Often we want to know: how close is A from being rank deficient.

Theorem 24 Let A € R™*™ n < m. There exist orthogonal matrices U € R"™*™ and
V e R™*™ and real numbers
012022 20,20

Such that A =UXVT and o; = /N fori=1,..,n, where

o1 0 0
0 o9 :
. _ . - 0
0 0 On

Moreover, if rank(A) = r then

or>092>--->0,>0

Opp1 =0pq2="---=0, =0
The numbers of o; are unique. They are called the singular values of A.

Idea: The smallest singular values quantify how close A is to lose a rank.

Some observations on the SVD

1. Given A € R™*" (m > n) its singular values o1, ..., 0, are unique since o7, ...,02 are

the eigenvalues of AT A
2. U and V are not unique
3. Since VI AT AV = A with o2, ..., 02 eigenvalues, the columns of V are always eigenvec-
tors of ATA
¥2 0

0 0 O

eigenvectors of AAT

4. Since AAT =U <21> vty (21 O) Ul =uU ( ) UT the columns of U are always

5. if A has rank r, then

(a) v1,...,v, form an orthonormal basis for R(AT)
(b) vp41, ..., v, form an orthonormal basis for N(A)
(¢) ui,...,u, form an orthonormal basis for R(A)
(d) Uyi1, ..., uy forma an orthonormal basis for N(AT)
6. let A € R™"™ and AV = UX, then ATuj = ojvj for j = 1,...,n and ATuj = 0 for
j=n+1,...m
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Theorem 25 General Let A € R™*" rank(A) =r (< min(n,m)). There exist o1 > o9 >
-+ >0, >0 and orthogonal U € R™ ™ 'V € R™" gsuch that

A=U (0 Z1 Orxn—r >VT

m—rXr Omfrxnfr

Remark: If rank(A) = n (injective) then the 0 matrices on the right are absent. If
rank(A) = m surjective then the 0 matrices on the bottom are absent. If A is square
nonsingular, then all 0 matrices are absent

Application: Given A € R"™*" rank(A) = r, and 0 < k < r, compute the distance of
A to My, define by
d(A, M) = inf{||A—S||r|S € My}

Il is the Frobenious norm on R™*"™ which is define by

Also find X € Mj, such that d(A, M) = ||A — X||r

Theorem 26 Let A € R™*" and k < r = rank(A). Let M} = {S € R™"|rank(S) < k}.
Let 01, ...,0, be the non-zero eigenvalues of A, then

d(A, M) = \/a,3+1+---+a,%

Let A=UXVT be the SVD of A. Then X = ULV where ¥ have now the o1, ....,0, = 0.
Then X € My and
A= X|p = d(A, M)

X is called the best approximation in My of A

Quadratic Form
Definition 21 A quadratic equation in two variables x,y is an equation of the form
azx® + 2bxy + cy? +dr +ey+ f=0 (1)

Equation (1) may be rewritten in the form

ey o) ()raa)-r=o
=(5) 4= 0)

2T Az = az® + 2bxy + cy?

Let

The term

is called the quadratic form associated with (1)
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Definition 22 Let A € R™ ™ be symmetric then the expression ' Ax with x € R™ is called
the quadratic form associated with A.
It is also define a quadratic function

F:R" 5 R" F(z) =2 Az

Definition 23 Given F : R™ — R, a point xo € R" is called stationary if g—z(:co) =0 for
1=1,2,...,n

Definition 24 Let A € R™™"™ be symmetric
1. A is positive definite if 7 Az >0 x #0 (denoted by A > 0)
2. A negative definite if v7 Ar <0 x #0 (denoted by A <0
3. A>0, or A is positive semi-definite if 7 Ax > 0 Vo € R”
4. A<0, or A is negative semi-definite if 2T Az <0 Va € R®
5. A indefinite if 7 Az taken both positive as well as negative real values
Theorem 27 Let A € R™™ be symmetric and A1, A, ..., A\n be its real eigenvalues. We have:
1. A>0& N\ >0i=1,2,...,n
A< \<0i=1,2,...,n
A>0&e N >0i=1,2,...,n

A<0e N<0i=1,2,..,n

A N

A is indefinite < A has eigenvalues of different sign

Definition 25 Let F : R™ — R be C?. Let xy be stationary point, the Hessian matriz at
To 1S
Fiyzy(20)  Fryzo(z0) -+ Fuyw, (7o)
H(zo) = szz%(‘ro) Fayay (7o) :

F93n5171 e T Fl‘nzn (.’I}O)

Theorem 28 Let F' : R? — R be twice continuosly differentiable and <zo> be stationary
0

point. Then

1. H(xo,y0) <0 = <?:jo> local mazimum
0

2. H(zo,y0) >0 = (ggj()) local minimum
0

3. H(xo,yo) indefinite = (50) saddle point
0
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Positive definite matrices

Some necessary conditions are:

1. A is positive definite = A is nonsingular
2. A is positive definite = det(A) > 0
Theorem 29 Let A € R™™" be symmetric. Then the following are equivalent
1. A is positive definite
2. det(A,) >0 forr=1,2,..,n

3. A can be reduced to upper triangular form using only type III row operations, and the
pivot elements will all be positive

4. There exist a lower triangular matriz L with positive diagonal elements such
that
A=LL"

called it Cholesky decomposition

5. There exist nonsingular matriz B such that

A=BTB

Jordan canonical/Normal form

The aim is to find a nonsingular 7' € C™*" such that T—' AT = J,where A € C"*" and J has
a simple form.

The simple matrix Y is the matrix pf the linear map A : C" — C" with respect to the basis
{t1,t2, ... tn}.

A psecific case is the diagonal matrix, but not all matrix are diagonalizable.

Theorem 30 Let A € C™ ™. There exists a nonsingular T € C™*" such that T~ AT = J,

with
i 0 -0
J = 0 J2 0
0 0 0 jn
a blockdiagonal matriz with diagonal blocks j; of the form
Jji=M+N
where I is an identity matriz and N has the form
o1 0 --- 0
o0 1 --- 0
N={:i o
0 0 0 1

00 0 0 O

and X is an eigenvalue of A. The matrixz J is called the Jordan Normal form of A.
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Note:
e J is just the matrix of A : C" — C™ with respect to a suitable basis of C™

e [t is possible that a block j; is 1 x 1. In that case it has the form j; = A, where X\ is an
eigenvalue of A.

Theorem 31 Dimension theorem For a linear map A:V — V we have
dimV = dim N(A) 4+ dim R(A)

Note: The dim N(A — A is equal to the number of linearly independent eigenvectors asso-
cieted with A

Definition 26 Let A1, Ao, ..., A\ be the distict eigenvalues of A. We will denote
g; = dsz(A — >\zI)
The integers g1, g2, -..,; are called the geometric multiplicities of the eigenvalues A1, Aa, ..., A\

Definition 27 Suppose A1, Ag, ..., A are the distinct eigenvalues of A, then the characteristic
polynomial is given by

pa(z) = (=1)"(z = A)" (2 = A2)® -+ (2 = Ap)™

for certain positive integers a; such that a; +as + -+ ar =n
The integer a; is called agebraic multiplicity of the eigenvalue \; fori=1,....k

Note: ¢g; <aq;fori=1,...k

Definition 28 Let V' be a (complex) vector space, and let Vi, ..., V} be linear subspaces of V.
We define their sum as

‘/1_|_V'2+..._|_Vk:{;p1—{—x2—|—~-—{—xk€V|$iGV;}

Definition 29 we will write
V=VieWVe --aV

if
1. V=+V+ --+V
2. every x € V can be written as x = x1 + - - - + x with x; € V; in exactly one way,

e x=x14+To+ - +xp withx; €V, ande =21+ -+ 7T withT; € V; = x; =x; for
1=1,...., k.
We then say that V is the direct sum of V1, ..., Vj

Definition 30 Let W C V is a subspace. We call W A-invariant if oll xt € W we have
Ax € W. We write
AW Cc W
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Now the jordan form under the condition a; = ¢g; (i = 1,...,k), that is A is diagonalizable
since it have lineraly independent eigenvectors, is given by:

A

A1
A2

A2

Ak

Ak

that is all Jordan blocks j; are 1 x 1, and these blocks are A\ (aj times ), A2(ag2 times ) up to
A (ag times ).

Definition 31 Let q(z) be a polynomial. We say that annihilates A if g(A) =0

Note: By the CH theorem, p4(z) annihilates A. For a given A there are many polynomials
with this property

Theorem 32 Let A € C"*™. There exist exactly one monic polynomial pp,in(z) of min-
imum degree that annihilates A

Note:
® Dpin(z) is called minimum polynomial of A.
e Monic means that the coeficcient of the higher power of z is 1

e the minimum polynomial is unique

Corollary 3 Let p(z) be any polynomial tha annihilates A. Then pmin(2) is a divisor of p(z),
i.e. there eixts q(z) such that

p(Z) = q(z)pmin(z)

Theorem 33 Let A € C"*™. Every eigenvalue of A is a root of pmin(z). Conversely, every
100t Of Pmin(2) is an eigenvalue of A

Let A € C™™ and Ay, ..., \; be distinct eigenvalues, then p,,;,(2) can be written as
Pmin(2) = (2 = A1)"™ (2 = A)™2 -+ (2 — Ag)™
for certain positive integers mq, ..., my

Theorem 34 Let A € C™*" and let A1, ..., \r be distinct eigenvalues. Let mq, ..., my be the
integers for i =1, ...,k define subspace

Vi=N((A=XD)™)

Then we have
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1. V; is A — invariant
22.C"=VieWhe -V
Summary:

1. The total size of the blocks corresponding to an eigenvalue X is equal to a, the algebraic
multiplicity

2. The number of Jordan blocks corresponding to an eigenvalue X is equal to g, its geometric
multiplicity

3. the maximum size of blocks corresponding to A is qual to m, its multiplicity as a root
of the minimal polynomial
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